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Abstract

Background: Genotype frequencies for chemotherapy-induced nausea and vomiting (CINV)-related polymorphisms
have not yet been reported for Japanese subjects.

Methods: We analyzed 10 genotype frequencies for following polymorphisms associated with the development
of CINV: serotonin 5-HT3 receptors (HTR3); neurokinin-1 receptors (Tachykinin-1 receptors, TACR1); dopamine D2

receptors (DRD2); and catechol-O-methyltransferase (COMT).

Results: All polymorphisms were successfully genotyped in 200 Japanese subjects and were in Hardy-Weinberg
equilibrium. Almost all genotype frequencies were similar to those in the HapMap database or in the previous
reports, while frequencies for the Y192H polymorphism in TACR1 were different in Japanese subjects from those
in a previous report.

Conclusions: The present study revealed genotype frequencies for polymorphisms, which were related to the
appearance of CINV in Japanese subjects. Individual therapy based on genotype variations for each race is
needed to allow cancer patients to undergo chemotherapy more safely and to understand etiology of CINV.
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Background
Chemotherapy-induced nausea and vomiting (CINV) is a
common severe side effect for cancer patients undergoing
emetic chemotherapy [1, 2]. CINV is a significant problem
because it affects not only the quality of life (QOL) of the pa-
tient but also determines the possibility of chemotherapy con-
tinuation. Thus, it is extremely important to overcome CINV.
The involvement of 5-hydroxytryptamine (5-HT; sero-

tonin) has been reported as a mechanism of CINV, which
is released from enterochromaffin cells in the mucosa of
the small intestine adjacent to vagal afferent neurons in
response to the stimulation of anti-cancer drugs [3, 4].

The released 5-HT activates serotonin 5-HT3 receptors of
the medulla via the area postrema and the medial solitary
nucleus, ultimately leading to a severe emetic response
[5, 6]. Therefore, serotonin 5-HT3 receptor antagonists
can significantly improve CINV [7]. According to the
American Society of Clinical Oncology guidelines, an
emetic prophylaxis for high-emetogenic-risk chemo-
therapy should include a serotonin 5-HT3 receptor an-
tagonist, dexamethasone, and aprepitant [8], which, in
combination, provides the best antiemetic efficacy [9].
Serotonin 5-HT3 receptors are members of the super-

family of Cys-loop ligand-gated ion channels [10]. There
are five subunits encoded by different genes in the
human genome: serotonin 5-HT3A, 5-HT3B, 5-HT3C, 5-
HT3D, and 5-HT3E receptors [11–13]. Serotonin 5-HT3A

and 5-HT3B receptors are expressed in the hippocampus,
spleen, kidney, small intestine, and colon [14]. Serotonin
5-HT3A receptors are mainly involved in the formation
of functional receptors [12], and it is the only subunit
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capable of forming functional homopentameric recep-
tors [15]. The other subunits form functional receptors
only when their receptor is co-expressed with serotonin
5-HT3A receptors [16–18].
CINV can also occur via other physiological neurotrans-

mitters, including substance P [19], neurokinin-1 (NK-1)
[20, 21], dopamine [21], and catechol-O-methyltransferase
(COMT) [22]. Substance P is a member of the neurokinin
family of peptides, which includes NK-1. NK-1 receptors
(Tachykinin-1 receptors; TACR1) are located in the gut,
the area postrema, and the nucleus tractus solitaries [4].
NK-1 exerts its biological effects by acting in the vomiting
center in central NK-1 receptors. Thus, NK-1 receptor an-
tagonists have recently been recommended when starting
chemotherapy. The COMT enzyme modulates neuro-
transmission by metabolizing dopamine, which is known
to play a role in the development of nausea and vomiting.
Dopamine D2 receptor blockade in the area postrema and
the vomiting center has an antiemetic effect. Thus, it is
expected that polymorphisms of the COMT would have
effects on dopamine-related pathogenesis, treatment, and
adverse events [22].
Despite improvements in antiemetic treatment with

serotonin 5-HT3 receptor antagonists, a considerable
number of patients still suffer from CINV. Of patients
that received an emetic prophylaxis, 20–38 % and 50–
60 % showed delayed nausea and vomiting reactions,
respectively [2, 23]. One potential reason for this effect
is due to individual genetic differences in the function of
their receptors and enzymes. Polymorphisms in their
genes could serve as a predictive factor for CINV in pa-
tients undergoing moderately emetogenic chemotherapy
[24], although there have been no reports confirming
this genetic variation in a Japanese cancer patients. In
this study, therefore, we analyzed genotype frequencies
for polymorphisms of the HTR3, TACR1, DAD2, and
COMT genes in Japanese subjects, which are associated
with the development of CINV.

Methods
Study population
Japanese subjects, who presented at the Preventive Health
Service Department of Nagoya University Hospital to
have a physical checkup were recruited for this study.
The sample of 200 subjects was recruited randomly from
unrelated healthy individuals (average age: 49.9 years;
range: 25–89 years) of which 125 were male and 75 were
female, under institutionally approved internal review
board protocols, with informed consent. This study was
approved by the ethics committee of Nagoya University
Graduate School of Medicine. This study was also per-
formed according to Good Clinical Practice guidelines.
The written informed consent documents were obtained
from all subjects.

DNA isolation
Genomic DNA was extracted from peripheral blood using
QIAamp® DNA Blood Mini Kit (QIAGEN; Valencia, CA,
USA) following the manufacturer’s spin protocol instruc-
tions. Purified genomic DNA adjusted to a concentration
of 10 ng/μL was stored at −30 °C until analysis.

Target gene polymorphisms
We analyzed the following 10 gene polymorphisms,
which are known to be closely related to CINV (Fig. 1).

1) Serotonin 5-HT3 receptor genes: HTR3A (GenBank
accession no. DQ050460) and HTR3B (DQ050462)
in chromosome 11 (11q23.1), and HTR3C (AF459285)
in chromosome 3 (3q27). We analyzed the untranslated
region of HTR3A (rs1062613) [25], the exon
regions of HTR3B (rs1176744 and Ala223Thr)
[25, 26], the promoter region of HTR3B
(−100_-102AAG deletion) [25], and the exon
region of HTR3C (rs6766410) [24].

2) NK-1 receptor genes: TACR1 (AY420417) in
chromosome 2 (2p13.1-p12). We analyzed the
exon regions of TACR1 (Y192H and rs17838409).

3) Dopamine D2 receptor genes: DRD2 (AY418851) in
chromosome 11 (11q22-23). We analyzed the exon
region (rs6277) and the intron region (rs1076560).

4) COMT gene: COMT (DQ040245) in chromosome
22. We analyzed the exon region (rs4680) [22].

Genotyping
Determination of allele variations among subjects was
performed using the TaqMan® allelic discrimination
assay (TaqMan® 5′-exonuclease allelic discrimination
assay; Applied Biosystems; Foster City, CA, USA). The
polymerase chain reaction (PCR) mixture contained
1 μL of genomic DNA, fluorescence probes (TaqMan®
20×, 40×, and 80× probes; Applied Biosystems), 2×
TaqMan® Universal PCR Master Mix (Applied Biosys-
tems), and distilled water (Wako; Tokyo, Japan) up to a
total 10 μL volume in a 96-well microplate. Gene frag-
ments were amplified by PCR using the Applied
Biosystems Real-time PCR System. Amplification con-
ditions were as follows: initial denaturation for 10 min
at 95 °C, followed by 50 cycles of denaturation at 92 °C
for 15 s, and annealing and extension at 58 °C for
1 min.

Deletion mutation screening
Deletion mutation screening was conducted by direct
sequencing analysis. PCRs comprised 1 μL of DNA in
the presence of 10× Buffer (TaKaRa; Shiga, Japan), dNTP
(2.5 mM dNTPmix; TaKaRa), 20 μM forward/reverse
primer (AAG deletion R/F; Rikaken; Nagoya, Japan), and
rTagDNA polymerase (TaKaRa). The PCR mixture was
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Fig. 1 Location of gene polymorphisms. Representative gene structure, location of exons, and polymorphisms in (a) HTR3A serotonin 5-HT3A receptors,
(b) HTR3B serotonin 5-HT3B receptors, (c) HTR3C serotonin 5-HT3C receptors, (d) TACR1 neurokinin-1 receptors, (e) DRD2 dopamine D2 receptors,
and (f) COMT catechol-O-methyltransferase. For all polymorphisms, the accession numbers of the dbSNP database are indicated
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amplified with PCR Thermal Cycler Dice® Standard
(TaKaRa). The conditions of amplification were 94 °C
for 1 min; 40 cycles of 94 °C for 30 s, 55 °C for 30 s,
and elongation at 74 °C for 1 min; 1 cycle at 72 °C
for 7 min. PCR products were purified from the reac-
tion mixture using distilled water. Cycle sequencing
was performed using the Big Dye® Terminator v1,
Cycle Sequence Kit (Applied Biosystems) up to 20 μL,
and then cleaning step and loaded onto an ABI
PRISM® 310 Genetic Analyzer sequencer (Applied
Biosystems).

Statistical analysis
Hardy-Weinberg equilibrium testing was performed
using Haploview 4.1 software.

Results
The genotype and allele frequencies of the polymorphisms
are shown in Table 1.

The major alleles
The major alleles were as follows: the C allele for HTR3A
(rs1062613), the T and G alleles for HTR3B (rs1176744
and Ala223Thr), the A allele for HTR3C (rs6766410), the
T and G alleles for TACR1 (Y192H and rs17838409), the
C allele for DRD2 (rs6277 and rs1076560), and the G allele
for COMT (rs4680).

Genotype frequencies of serotonin 5-HT3 receptors
The genotype frequencies of serotonin 5-HT3 receptors
were as follows. For HTR3A (rs1062613), the C/C, C/T,
and T/T genotype frequencies were 75.0 % (n = 150),
24.0 % (n = 48), and 1.0 % (n = 2), respectively. For
HTR3B (rs1176744), the T/T, T/G, and G/G genotype
frequencies were 51.5 % (n = 102), 41.9 % (n = 83), and

6.6 % (n = 13), respectively. For HTR3B (Ala223Thr),
the G/G, G/A, and A/A genotype frequencies were 100 %
(n = 200), 0 % (n = 0), and 0 % (n = 0), respectively. For
HTR3C (rs6766410), the A/A, A/C, and C/C genotype
frequencies were 41.4 % (n = 79), 42.4 % (n = 81), and
16.2 % (n = 31), respectively.
On the other hand, for HTR3B (−100_-102AAG dele-

tion) (n = 127; 73 subjects not detected), the frequencies
of insertion/insertion, insertion/deletion, and deletion/
deletion mutations were 74.0 % (n = 94), 21.3 % (n = 27),
and 4.7 % (n = 6), respectively.

Genotype frequencies of NK-1 receptors
The genotype frequencies of NK-1 receptors were fol-
lows. For TACR1 (Y192H), the T/T, T/C, and C/C geno-
type frequencies were 100 % (n = 200), 0 % (n = 0), and
0 % (n = 0), respectively. For TACR1 (rs1738409), the G/
G, G/A, and A/A genotype frequencies were 100 % (n =
200), 0 % (n = 0), and 0 % (n = 0), respectively.

Genotype frequencies of dopamine D2 receptors and COMT
The dopamine-related genotype frequencies were follows.
For DRD2 (rs6277), the C/C, C/T, and T/T genotype fre-
quencies were 89.5 % (n = 179), 10.5 % (n = 21), and 0 %
(n = 0), respectively. For DRD2 (rs1076560), the C/C, C/A,
and A/A genotype frequencies were 38.0 % (n = 76),
47.5 % (n = 95), and 14.5 % (n = 29), respectively. For
COMT (rs4680), the G/G, G/A, and A/A genotype fre-
quencies were 44.6 % (n = 88), 43.2 % (n = 85), and 12.2 %
(n = 24), respectively.

Minor allele frequencies (MAFs)
The MAFs were as follows: 0.13 for rs1062613 (n = 200),
0.28 for rs1176744 (n = 198; 2 subjects not detected),
0.37 for rs6766410 (n = 191; 9 subjects not detected),

Table 1 Genotype distribution

No. Gene Localization SNP Exchange N Genotype frequencies (%) MAF HWE

−/− +/− +/+

1 HTR3A 5′ UTR rs1062613 C > T 200 150 (75.0) 48 (24.0) 2 (1.0) 0.13 0.64

2 HTR3B Promotor −100_-102 AAG insertion/deletion delAAG 127 94 (74.0) 27 (21.3) 6 (4.7) - -

3 Exon 5 rs1176744 T > G 198 102 (51.5) 83 (41.9) 13 (6.6) 0.28 0.62

4 Exon 6 Ala223Thr G > A 200 200 (100) 0 (0) 0 (0) 0 -

5 HTR3C Exon 5 rs6766410 A > C 191 79 (41.4) 81 (42.4) 31 (16.2) 0.37 0.80

6 TACR1 Exon 2 Y192H T > C 200 200 (100) 0 (0) 0 (0) 0 -

7 Exon 4 rs17838409 G > A 200 200 (100) 0 (0) 0 (0) 0 -

8 DRD2 Exon 7 rs6277 C > T 200 179 (89.5) 21 (10.5) 0 (0) 0.06 0.98

9 Intron 6 rs1076560 C > A 200 76 (38.0) 95 (47.5) 29 (14.5) 0.38 1.00

10 COMT Exon 4 rs4680 G > A 197 88 (44.6) 85 (43.2) 24 (12.2) 0.34 0.87

HWE Hardy-Weinberg equilibrium, MAF minor allele frequency, HTR3A serotonin 5-HT3A receptors, HTR3B serotonin 5-HT3B receptors,
HTR3C serotonin 5-HT3C receptors, TACR1 tachykinin-1 receptors, DRD2 dopamine D2receptors, COMT catechol-O-methyltransferase
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0.06 for rs6277 (n = 200), 0.38 for rs1076560 (n = 200),
0.34 for rs4680 (n = 197; 3 subjects not detected), and 0
for the other polymorphisms. There was no deviation
from Hardy-Weinberg equilibrium detected (P > 0.05).

Discussions
We investigated genotype frequencies for polymorphisms
related to the appearance of CINV in a Japanese popula-
tion. HTR3B (Ala223Thr) and DRD2 (rs1076560) were
particularly first study in Asian. Our results suggest that
determining the genotype of these polymorphisms except
for TACR1 and HTR3B can help to inform individually
based medication for treating or preventing CINV using
genomic information for the Japanese cancer patients.
As a general rule, the genotype of a sample used in a

genetic analysis must conform to Hardy-Weinberg equi-
librium [27]. Sample size (200 subjects) was small to
reach conclusive findings, whereas the results could be
reliable in Hardy-Weinberg equilibrium, which reflects a
population’s actual genetic structure over time with the
genetic structure. Our results showed that the genotype
frequencies for polymorphisms were similar to those
in the HapMap database or reported previously [28],
suggesting that they are reliable. Namely, the MAFs of
HTR3A (rs1062613, n = 86, Asian), HTR3B (rs1176744,
n = 90, Asian), HTR3C (rs6766410, n = 88, Asian), DRD2
(rs6277, n = 82, Asian), DRD2 (rs1076560, n = 98,
European), COMT (rs4680, n = 88, Asian), and TACR1
(rs17838409, n = 226, Asian) were 0.151, 0.30, 0.36,
0.049, 0.12, 0.24, and 0.004, respectively. Although
HTR3B (Ala223Thr) is not indicated in the HapMap
database (http://www.1000genomes.org/), the MAF has
been reported to be 0.002 in Caucasians [26].
In a previous study, the HTR3 polymorphisms were

shown to serve as a predictive factor for CINV [28].
Vomiting occurred in 50 % of patients with the C/C
genotype of HTR3C (rs6766410), compared to only 19 %
and 22 % in patients with the A/A and A/C genotypes,
respectively [24]. These findings indicated that individual
genetic differences affected the response to anti-emetic
drugs. Patients with the 100_-102AAG deletion (deletion/
deletion) showed vomiting more frequently than those
with insertion/insertion and insertion/deletion muta-
tions of this gene [25]. In the present Japanese sample,
the −100_-102AAG deletion was not detected in 127
subjects. Although the reasons are unknown, the amount
of DNA analyzed might have been too small to detect this
deletion. Further investigations are needed to elucidate
the role of the −100_-102AAG deletion in relation to
CINV in Japanese subjects, including improving method
of efficient DNA extraction.
Polymorphisms of the TACR1 (Y192H and rs17838409)

are associated with the binding ability of substance P to

NK-1 receptors [29], and have thus far been found only
in the African-American population. It is therefore
suggested that polymorphisms of the TACR1 are not
clinically relevant for the Japanese population.
Gene polymorphisms have been associated with chan-

ging the expression level of gene or protein function.
HTR3A (rs1062613), which is intronic polymorphism in
the 5′ untranslated regions (5′UTRs) of HTR3A, affects
the expression level of the downstream HTR3A [30].
Amino acid substitutions of HTR3B (rs1176744 and
Ala223Thr) are related to receptor functional disorders
[31]. Desensitization of serotonin 5-HT3 receptors does
not occur in subjects with the HTR3B (rs1176744) poly-
morphism, which changes a tyrosine residue to a serine
residue [32]. The T allele in DRD2 (rs6277) reduces the
stabilization of the dopamine D2 receptors by changing
the folded structure of the mRNA [33]. Thus, reduced
dopamine D2 receptor (DRD2) binding was found to
be associated with the C/C genotype of the rs6277
polymorphism of the DRD2 gene [34]. Subjects with
an A allele in DRD2 (rs1076560) have a reduced ability
to synthesize dopamine D2 receptors [35]. A missense
variant of COMT (rs4680) also leads to an amino acid
change. The Val version of COMT (G at rs4680) is as-
sociated with higher COMT enzyme activity leading to
lower levels of dopamine in the brain, while the Met
version (A at rs4680) is associated with lower enzyme
activity and higher dopamine levels [22].
Determining an individual’s genotype is important to

predict the clinical responses to chemotherapy, whereas
it is difficult to incorporate the rapidly accumulating
genome information for the Japanese population because
of genetic differences among races. There are no studies
the difference in Japanese and other races for the methods
of preventing adverse effects related to CINV. As one of
the individual-based medication for adverse effects in-
duced by chemotherapy, UDP-glucuronosyltransferases
(UGT) 1A1*28 has been suggested to be related to neu-
tropenia induced by irinotecan, a topoisomerase inhibi-
tor used in combination with other chemotherapeutic
agents. FDA (Food and Drug Administration) recom-
mends that patients with UGT1A1*28 are treated at the
small doses of irinotecan, because the frequency of
UGT1A1*28 in Caucasian is higher than that in Asian
[36]. We believe that our results help to determine in-
dividual-based medications for treating and/or pre-
venting CINV in Japanese cancer patients. Further
studies are needed to confirm the relationship between
gene polymorphisms and the efficacy of antiemetic
therapies on CINV in Japanese cancer patients. These
support the idea of establishing individualized supportive
therapies (some additional prophylactic antiemetics) for
CINV, and contribute to the development of more ef-
fective and safer chemotherapies.
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Conclusions
We identified the genotype frequencies for polymor-
phisms related to the mechanism of appearance of CINV
in Japanese subjects. Our study theoretically contributes
to increasing the safety of chemotherapy with supportive
therapy to prevent CINV and increase the QOL of cancer
patients.
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